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the ghost condensate with the global shift symmetry softly broken by a potential. We show

that this system can drive a cosmological expansion with Ḣ > 0. Demanding the absence

of instabilities in this model requires Ḣ <∼ H2. We then construct a general low-energy

effective theory that describes scalar fluctuations about an arbitrary FRW background, and

argue that the qualitative features found in our model are very general for stable systems

that violate the NEC. Violating the NEC allows dramatically non-standard cosmological

histories. To illustrate this, we construct an explicit model in which the expansion of our

universe originates from an asymptotically flat state in the past, smoothing out the big-

bang singularity within control of a low-energy effective theory. This gives an interesting

alternative to standard inflation for solving the horizon problem. We also construct models

in which the present acceleration has w < −1; a periodic ever-expanding universe; and a

model with a smooth “bounce” connecting a contracting and expanding phase.
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1. Introduction

According to our present understanding of cosmology the history of the universe has been

characterized by an incessant slowing down of the Hubble rate H = ȧ/a. Even the “accel-

erated” expansion (ä > 0) today and during inflation at best corresponds to H = constant,

and therefore can only halt the decrease of H. Intuitively, the fact that H cannot increase

is a manifestation of the fact that gravity is generally attractive, and in some sense never

“too repulsive.” More formally, Ḣ ≤ 0 can be viewed as a consequence of the null energy

condition (NEC), which requires that for all null vectors nµ the matter stress-energy ten-

sor must satisfies Tµνnµnν ≥ 0. In a Friedmann-Robertson-Walker (FRW) spacetime this

condition reduces to ρ + p ≥ 0, which for a spatially flat universe directly implies Ḣ ≤ 0.

But if the NEC is satisfied and H is always decreasing, why is the universe expanding

in the first place? The conventional view is that H increases going backward in time until

we reach an era where H ∼ MPl (the “big bang”) where quantum gravity effects become

important. At this scale general relativity breaks down as an effective theory, so in this

view the mystery of the origin of the expansion of the universe is inseparable from the

issue of the UV completion of gravity. On the other hand, if the NEC is violated it is

possible that the history of the universe is drastically modified without quantum gravity

effects becoming important. For example, the present expansion might be due to a smooth

“bounce” from an earlier contracting phase. An even more interesting possibility, which is
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just a limiting case of a bouncing cosmology, is a universe that asymptotically in the past

is Minkowski space and as time goes on it simply starts expanding connecting smoothly

to the subsequent familiar FRW cosmology and thus resolving the Big Bang singularity.

These possibilities are discussed more fully below.

Another motivation to consider violations of the NEC come from observations of the

current accelerated expansion of the universe. These are conventionally summarized by the

equation of state parameter w = p/ρ. A cosmological constant has w = −1, but present

data allow w >∼ −1.2 [1, 2]. The NEC implies w ≥ −1, and it is natural to ask whether

w < −1 is a viable possibility.

One simple way to violate the NEC is to add fields with wrong-sign kinetic terms.

Scalar excitations have energy unbounded from below (they are “ghosts”), and are therefore

subject to catastrophic instabilities at all scales. In particular the vacuum is unstable to

decay into ghosts and gravitons with an infinite rate in any theory that is Lorentz invariant

in the UV [3, 4]. This kind of model can nonetheless be made compatible with observation

by coupling it only to gravity and postulating that unknown UV physics breaks Lorentz

invariance and cuts off the divergence for short wavelenths [3, 4]. In this approach, the

stability of the universe depends on unknown UV physics as the leading instability is at

short distances1.

The NEC is believed to hold for all well-behaved systems without instabilities. Other

energy conditions can be violated by a sensible system simply by adding a suitable (positive

or negative) cosmological constant. The NEC cannot, since it is saturated by a cosmological

constant. Indeed it has been shown in Ref. [6] for a very broad class of models that whenever

the stress-energy tensor violates the NEC the system has catastrophic instabilities, either

in the form of ghosts or in the form of exponentially growing modes with arbitrarily short

wavelengths (“tachyons”).2 Both types of instability occur for all wavelengths down to the

UV cutoff of the theory. Therefore, unlike the Jeans instability, these instabilities cannot

be damped by Hubble friction, which is only effective at frequencies smaller than H.

The results of Ref. [6] are derived at the two-derivative level in a systematic low-energy

expansion. Higher derivative corrections are suppressed by some scale M , and in general

they can be safely ignored at frequencies and momenta smaller than M . However this is not

the case if the two-derivative action is degenerate, and some modes propagate only thanks

to higher derivative terms. This is precisely what happens in the ghost condensate [7] and

in more general theories of massive gravity [8]. For example, scalar fluctuations around

the ghost condensate have dispersion relation ω2 = ~k4/M2. Theories of modification of

gravity can be thought as non-trivial scalar backgrounds with a stress-energy tensor equal

to the one of a cosmological constant [6]. Therefore they lie on the threshold of violating

the NEC. This explains the origin of the degenerate dispersion relations and tell us that

these theories are a first step towards violating the NEC.

In this paper we use the ghost condensate as a starting point to construct a consistent

1See [5] for an explicit realization of a Lorentz violating cut-off of a ghost instability.
2The only exceptions are certain anisotropic systems which are stable but admit superluminal excita-

tions [6]. However such exceptions are not relevant for cosmology, where one is only interested in isotropic

systems.
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and technically natural low-energy effective field theory that violates the NEC without any

instabilities. The simplest example is a ghost condensate φ rolling up a linear potential,

which gives rise to superacceleration (Ḣ > 0). The late-time solution for φ climbs up

the potential indefinitely, making the universe expand with an indefinitely growing Hubble

rate, H ∝
√

t. This solution is an attractor, in the sense that trajectories flow to a common

late time behavior, like in conventional slow-roll inflation. An interesting feature of this

model is that we cannot violate the NEC by an arbitrary amount, in the sense that we

must have

Ḣ <∼ H2 (1.1)

to avoid instabilities. This comes from an interplay between gradient and Jeans instabilities.

As discussed in Ref. [6], violating the NEC gives rise to a dispersion relation of the form

ω2 ∼ −k2, which has a gradient instability. This instability is cured at short distances

by the higher-derivative term giving a dispersion relation schematically of the form ω2 ∼
−k2 + k4, which is unstable only for long times ω < ωgrad. However, the k4 term increases

the mixing with gravity, leading to a Jeans instability similar to that for ordinary matter,

so the system is unstable for ω < ωJeans. Remarkably, we find the model-independent

relation between the instabilities

ωgrad ωJeans ∼ Ḣ . (1.2)

Hubble friction will damp all instabilities only if both ωgrad and ωJeans are smaller than H,

which leads to eq. (1.1). We emphasize that if this inequality is violated, the instability

does not extend to arbitrarily short distances and time scales, and is under control of

the effective theory. These instabilities are therefore much milder than ghost or tachyon

instabilities, and may in fact have interesting cosmological consequences. (For example,

the conventional Jeans instability gives rise to structure formation in the universe.)

In fact, these features are much more general than this particular model. We demon-

strate this by performing a general analysis of scalar fluctuations about an arbitrary FRW

cosmological history. The analysis can be viewed most simply as the general case of an

expansion driven by a rolling scalar. However, it also applies to the fluctuations of the

Goldstone mode of time translations in the case where the expansion is driven by a mix-

ture of fluids and rolling scalar fields, and so the analysis is quite general. We find that the

qualitative features of the ghost condensate in a linear potential are completely generic. In

particular, whenever Ḣ is positive the system is unstable at the two-derivative level, and

the same interplay between gradient and Jeans instabilities leads to eq. (1.2), so we must

have Ḣ <∼ H2 in order for instabilities to be completely absent.

We then consider a number of cosmological applications of models based on ghost

condensation that violate the NEC without instabilities. We first discuss the possibility

that the present expansion of the universe is superaccelerating (Ḣ > 0), corresponding to

w < −1. The model consists of the ghost condensate rolling up a potential. In such a model

H can in principle increase smoothly forever, although at some point H becomes so large

that the model exits the regime of validity of the effective field theory. To get a measurable

violation of the NEC we must be close to saturate the inequality (1.1), suggesting that
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there may be long wavelength growing modes in the dark energy sector that just started

evolving. These may provide an additional signal for this class of models.

We then construct a model where the universe starts from Minkowski space in the

asymptotic past. The model consists of a ghost condensate with φ = t that rolls up a

potential V ∼ φ−2. For large negative t, this model gives H ∼ |t|−1, so the universe goes

from a zero curvature, zero energy state to higher curvatures and energies, and this can

then be smoothly connected to a standard FRW expansion.

Next, we consider a model which gives rise to a cyclic universe that is always expand-

ing. While the scale factor a(t) steadily grows larger and larger, the Hubble parameter and

the energy density are periodic functions of time. In this model, a ghost condensate travels

along a periodic potential, giving rise to a phase of superacceleration followed by reheating,

a radiation-dominated and then matter-dominated phase, followed again by superacceler-

ation, and so on. In such a scenario, the present accelerated phase is the beginning of

primordial inflation!

Finally, we consider the possibility that the universe smoothly bounces from a con-

tracting to an expanding phase. Such a possibility has been considered previously in the

literature (for a review, see Ref. [9]), but in previous treatments the bounce was not under

theoretical control. We construct a completely smooth bouncing solution with no insta-

bility. Note that since H → 0 at the bounce, while Ḣ 6= 0, there is always an unstable

mode violating eq. (1.1). However, it is easy to arrange that instabilities do not have time

to grow much during the bounce, so that this phase is under theoretical control without

catastrophic instabilities.

We conclude that it is possible to have physical systems that violate the NEC without

instabilities or other pathologies, and that this opens up a large number of interesting new

possibilities for cosmology. The illustrative examples we consider are intended only as toy

models; we leave the construction of realistic models and their phenomenology to future

work.

2. Superacceleration without instabilities

The simplest example of a system that violates the null energy condition without developing

instabilities can be obtained as a deformation of the ghost condensate [7], as outlined in [10].

Ghost condensation can be realized starting from a Lagrangian for a derivatively coupled

scalar3

L =
√−g M4P (X) , X = −gµν∂µφ∂νφ (2.1)

with M an arbitrary mass scale. (Note that we take φ to have mass dimension −1 so that

X is dimensionless.) The absence of non-derivative couplings is natural if the scalar has a

global shift symmetry

φ 7→ φ + λ. (2.2)

In an expanding universe, one would expect that the field is asymptotically driven to rest

(φ̇ → 0) by Hubble friction. However, it is easily checked that there is also a cosmological

3We use a metric with (−,+, +, +) signature.
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solution at a minimum of P ,

φ = c t , P ′(c2) = 0 , (2.3)

where the metric is either Minkowski or de Sitter space. This is because at the minima of

P the stress energy tensor is the same as for a cosmological constant, although the field

is evolving with time [7]. Without loss of generality we can take c = 1 by a redefinition

of the field φ. We assume that the vacuum energy is positive, so the metric is de Sitter

space. However, unlike a cosmological constant, the ghost condensate has physical scalar

fluctuations defined as

φ(t, ~x) = t + π(t, ~x) . (2.4)

The action for π can be obtained expanding the original Lagrangian eq. (2.1). Up to now

we have neglected terms with more than one derivative acting on φ, like (¤φ)2. Although

they are not relevant for the unperturbed solution, they are important for the π dynamics

since they give the leading spatial kinetic term. We therefore obtain an action of the form

S =

∫

d4x
√−g

[

1

2
M4π̇2 − 1

2
M

2 (

∇2π
)2 − 1

2
M4π̇ (∇π)2 − Λ + · · ·

]

, (2.5)

where we have included a cosmological constant term and chosen P ′′(1) = 1
4 , which amounts

to a redefinition of the mass scale M . The action is not manifestly Lorentz invariant, as

expected since the unperturbed solution spontaneously breaks the Lorentz symmetry. In

particular there is no (∇π)2 spatial kinetic term, but the leading term is (∇2π)2. The

most generic action for π can be obtained using only symmetry arguments: π, as shown

in eq. (2.4), non-linearly realizes the broken time diffeomorphisms. This approach will be

developed further below.

To obtain a model with Ḣ > 0, we introduce a linear potential

V = V ′φ, V ′ = constant . (2.6)

It is natural to have |V ′| ¿ M5 because the potential is the only term that breaks the shift

symmetry. In fact, in the absence of gravity a linear potential does not break the shift

symmetry at all, since L 7→ L+ constant, and so the only radiative corrections come from

gravity. These are very small given the low cutoff of the effective theory4, so this form of

the effective theory is technically natural.

In the presence of the potential the background solution changes slightly, and it can

be described by a homogeneous mode π0(t) for the field π. Its equation of motion is

π̈0 + 3Hπ̇0 +
1

M4

dV

dφ
= 0 . (2.7)

Neglecting the π̈ term, we find the attractor solution

π̇0 = − V ′

3M4H
. (2.8)

4Constraints on the cutoff scale, M . 100 GeV, come from limits on IR modification of gravity in ghost

condensation [7, 11].
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The π̈ term is negligible only if

Ḣ <∼ H2 . (2.9)

The velocity of the background is slightly reduced by the tilt as the field rolls up the

potential. For small tilt, the stress energy tensor remains close to the one of a cosmological

constant with a slowly increasing magnitude, so that H grows with time. Notice that the

π̇0 perturbation becomes smaller and smaller with time as H increases and we approach

the following asymptotic behavior

H2 ' V (φ)

3M2
Pl

∝ t (2.10)

π̇0 ' − V ′

3H(t)M4
∝ 1√

t
. (2.11)

In this solution, H constantly grows with time, while π̇0 approaches the minimum of the

function P (see Fig. 1).

Figure 1: Schematic representation of the model presented in section 2.

We now proceed to study the stability of the system. First of all, we notice that because

we are dealing with an accelerating background where modes exit the Hubble horizon and

freeze out, an unstable mode has time to grow only if its rate is much faster than H. We

can thus restrict to consider wavelengths and timescales much smaller than H−1. This

means that H and Ḣ do not change during the time scales of interest, and can be treated

as constants.

The quadratic action for π can be obtained expanding eq. (2.5) around the new back-

ground π̇0:

S =

∫

d4x
√−g

[

1

2
M4π̇2 + ḢM2

Pl (∇π)2 − 1

2
M

2 (

∇2π
)2

]

, (2.12)

where we have used that at late times V ′ ' 6HḢM2
Pl.

5 The background π̇0 induces a (∇π)2

term, and for Ḣ > 0 it has the “wrong” sign, corresponding to P ′ < 0. This signals the

presence of instabilities, which we will refer to as ‘gradient instabilities’. In the absence of

5There are small shifts of the coefficients of π̇2 and (∇2π)2 that can be safely neglected.
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a tilt the expansion of the universe drives the field velocity to the point P ′ = 0, where there

is no (∇π)2 term. This point separates the stable region P ′ > 0 —where the fluctuation π

has a positive gradient energy— from the unstable one P ′ < 0. The negative tilt drives φ̇

into the unstable regime (see Fig. 1).

Neglecting the mixing of the π mode with gravity, we obtain the dispersion relation

ω2 +
2ḢM2

Pl

M4
k2 − M

2

M4
k4 = 0 . (2.13)

Note that stability is ensured for sufficiently short wavelengths by the k4 term. The modes

with the fastest instability rate are the ones with k2 ∼ M2
PlḢ/M

2
and their rate is of order

ω2
grad ∼ −

(

ḢM2
Pl

MM2

)2

. (2.14)

These instabilities are absent if this rate is slower than the Hubble expansion, which requires

the following constraint on the model parameters:

Ḣ

H
.

MM2

M2
Pl

. (2.15)

The mixing of the π mode with gravity gives rise to a second kind of instability, which

is already present in the ghost condensate model in the absence of a potential. It comes

from the mixing of the scalar with gravity and it can be interpreted as a sort of Jeans

instability [7]. The instability rate in Minkowski space is of order

ω2
Jeans ∼ −

(

MM2

M2
Pl

)2

. (2.16)

Also in this case the instability is cured if the Hubble rate is sufficiently fast

MM2

M2
Pl

. H . (2.17)

Comparing eqs. (2.14) and (2.16), we see that

ωgrad ωJeans ∼ Ḣ , (2.18)

independently of the model parameters. The two conditions for stability push in opposite

directions, and putting them together we are left with the window:

Ḣ

H
.

MM2

M2
Pl

. H . (2.19)

We conclude that at least for Ḣ ¿ H2 the model parameters can be chosen in such a

way that there are no instabilities, while H grows indefinitely. Notice that if eq. (2.19) is

satisfied at the initial time, it remains valid forever as H grows, while Ḣ/H decreases with

time.
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3. Effective theory for general FRW models

We now turn to a much more general analysis of cosmological models, and show that the

features found in the previous example are quite general. In particular, Ḣ <∼ H2 is always

required to avoid exponentially growing modes in the class of models we consider.

We would like to know whether a given cosmological expansion a(t) suffers from insta-

bilities. Clearly, we need to know all the light degrees of freedom to answer this question,

and we cannot answer it in complete generality. We will consider a framework which we

believe is very general. Most simply, it can be described as the effective theory for fluctua-

tions about a FRW background driven by a single rolling scalar with a completely arbitrary

Lagrangian. This therefore includes for example a standard slow-rolling inflaton and all

possible deformations of the ghost condensate, such as the one considered in the previous

section.

In fact, the analysis is even more general. We are effectively focusing attention on a

scalar excitation which is present in virtually all expanding universes independently of what

matter is actually driving the expansion: the perturbation corresponding to a common,

local shift in time for all the matter fields ψm. That is, given a background homogeneous

FRW solution a(t), ψm(t), we consider the perturbation

δψm(x) ≡ ψm(t + π(x)) − ψm(t) , (3.1)

parametrized by π(x), and the corresponding scalar perturbation of the metric as imposed

by Einstein’s equations.6 This is the perturbation which in the long-wavelength limit is

called adiabatic and obeys a conservation law which is insensitive to the matter content

of the universe [12]. By its very definition such a perturbation can be gauged away from

the matter sector by an x-dependent shift in time. In other words, as long as we are only

interested in this specific perturbation we can always choose a gauge in which the matter

fields are unperturbed, δψm = 0, and the scalar fluctuation is in the metric. We will adopt

this gauge choice and refer to it as ‘unitary gauge’. (For the case where the expansion is

driven by a single scalar field, this corresponds to the gauge choice φ(t, ~x) = φ0(t), where

φ0(t) is the unperturbed scalar solution.)

The existence of such a fluctuation mode sounds like a trivial consequence of the

presence of a time-dependent FRW background, but it is not. If the expansion of the

universe is driven by a mixture of rolling scalar fields, then the fluctuation we are interested

in is indeed defined by eq. (3.1); it is the Goldstone boson associated to the spontaneous

breakdown of time-translations. However in general the situation is more subtle. For

instance the ground state of a solid or a fluid is characterized by three scalar condensates

〈φi(x)〉 = xi (i = 1, 2, 3) that spontaneously break the product of spatial translations and

internal shift symmetries down to the diagonal subgroup [6]; in particular time translations

are unbroken. Still, in the case of a fluid it can be shown that non-vorticous excitations—

i.e., sound waves—can be described at the classical level as Goldstone bosons of broken

6Of course one such perturbation is trivial, corresponding to the FRW background solution with unper-

turbed matter fields expressed in an unconventional set of coordinates. We eliminate this pure gauge mode

by fixing a gauge for the metric.
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time-translational invariance around a rolling scalar condensate 〈φ(x)〉 = t, like a ghost-

condensate [6]. So for any mixture of cosmic fluids and rolling scalars there exists an

excitation that behaves like the Goldstone of broken time-translations, whose action is

invariant under spatial translations and rotations. When coupling to gravity is taken

into account, this translates into invariance under time-dependent spatial diffeomorphisms

xi → xi + ξi(~x, t). For more generic systems, e.g. solids or Lorentz-breaking massive

gravity models [8], the low-energy degrees of freedom and the residual symmetries will be

different, and our conclusions will not necessarily apply. Notice moreover that the presence

of additional modes besides the one we are considering could, by mixing with it, change its

dynamics.

We now proceed to construct the most general effective action for the Goldstone,

around a generic FRW background a(t). As we discussed, in unitary gauge the scalar

mode does not appear explicitly in the action but it is part of the metric. Once we choose

unitary gauge in fact time reparameterizations are not allowed anymore so that the metric

contains an additional scalar degree of freedom. As we will discuss later the π dependence

of the action can be restored using the usual Stückelberg procedure, as in the case of

massive gravity [13]. In unitary gauge the full dynamics is described by an action for

gravity which does not have the full diffeomorphism invariance, but it is only invariant

under time-dependent spatial diffeomorphisms xi → xi + ξi(~x, t).

It is particularly convenient to work with ADM variables [14]. These are the ‘lapse’

N ≡ 1/
√

−g00, the ‘shift’ Ni ≡ g0i, and the induced metric ĝij on hypersurfaces of constant

t. In the following we will lower and raise spatial indices with the three-dimensional metric

ĝij and its inverse ĝij . In ADM variables the full 4D metric reads

ds2 = −N2dt2 + ĝij(dxi + N idt)(dxj + N jdt) . (3.2)

The ADM formalism keeps manifest the invariance under 3D space diffeomorphisms: only

quantities which are manifestly covariant under these transformations appear in the equa-

tions. The invariance under time reparameterization, although not manifest, is obviously

still there. For our system, in unitary gauge the time variable is set by the unperturbed

matter fields ψm(t) so that the splitting between time and space, which is in general arbi-

trary, takes here a physical meaning. Therefore the unitary gauge action is not invariant

under time diffeomorphisms, while all the unbroken symmetries (time-dependent spatial

diffeomorphisms) are manifest in the ADM language.

The Einstein-Hilbert action is expressed in the ADM language as

SEH =
1

2
M2

Pl

∫

d4x
√−g R =

1

2
M2

Pl

∫

d3x dt
√

ĝ
[

NR(3) +
1

N
(EijEij − Ei

i
2)

]

, (3.3)

where R(3) is the Ricci scalar of the induced 3D metric. Eij is related to the extrinsic

curvature Kij of hypersurfaces of constant t,

Eij ≡ NKij =
1

2
[∂tĝij − ∇̂iNj − ∇̂jNi] , (3.4)

where ∇̂ is the covariant derivative associated to the induced 3D metric ĝij .
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The full action consists of the Einstein action plus matter terms. The Einstein action

is invariant under time reparameterizations, but the matter action is not because we have

chosen the gauge π ≡ 0 where the scalar fluctuations are parameterized by the metric. We

expand about a given cosmological background

ds2 = −dt2 + a2(t)d~x2 , ψm = ψm0(t) (3.5)

and consider general metric fluctuations

N = 1 + δN , Nj = δNj , ĝij = a2(t)δij + δĝij . (3.6)

The action written in terms of the fluctuation fields will have time-dependent coeffi-

cients because they are functions of the background matter fields ψm0(t). We there-

fore take the matter action to consist of the most general Lagrangian invariant under

spatial diffeomorphisms, with time-dependent coefficients. Although the natural integra-

tion measure is
√−ĝ d3x dt, we find it more convenient to use the 4D invariant measure√−g d4x =

√
ĝ N d3x dt. Since N is a scalar under spatial diffeomorphisms, this simply

amounts to a reshuffling of the terms in the Lagrangian.

3.1 Two-derivative Goldstone action

In this subsection, we use the formalism described above to construct the two-derivative

action for the π mode described in the previous subsection. At short distances and times

where the mixing with gravity can be neglected, this describes the physical scalar fluctu-

ation of the system. The results obtained here will be confirmed by a complete analysis

of the full gravitational action in the section 3.3, but the present analysis is much simpler

and more transparent.

Our strategy is to write the most general matter action in unitary gauge π ≡ 0 order by

order in the metric fluctuations δN , δNj , and δĝij . We can then restore the π dependence

using the Stückelberg trick. That is, given a space-diff invariant term in unitary gauge,

e.g. 1/N2, we write its transformation law under time-diffeomorphisms

1

N2
= −g00 7→ 1

N2
+ 2 ∂0ξ

0 − (∂µξ0)2 , (3.7)

where we kept terms of zeroth order in the metric fluctuations and of second order in the

transformation parameter ξ0. We can then restore invariance under time reparameteriza-

tions by introducing the field π transforming as

π 7→ π − ξ0 , (3.8)

and using the gauge-invariant combination 1/N2+2 ∂0π−(∂µπ)2 in place of 1/N2 wherever

the latter appears in the unitary-gauge Lagrangian. This procedure, where we neglected

the gravitational perturbations, gives the action for the Goldstone π. In order to expand

the action at quadratic order in π we need the transformation law of all terms in the

action under time diffeomorphisms at second order in the transformation parameter ξ0.

The Einstein-Hilbert action is invariant under a generic 4D diffeomorphism, thus from
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there we get no contribution to the π Lagrangian. The same holds true for the measure√−g d4x in the matter action. Also all coefficients that explicitly depend on time should be

evaluated at (t+π). However it is reasonable to assume that the typical time scale for these

coefficients will be of order H−1 so that, after expanding in π, these give rise only to non-

derivative terms suppressed by H, Ḣ, etc.: we can thus neglect these contributions as long

as we are interested in fluctuations with wavelengths much shorter than the cosmological

horizon. Finally, we are interested in constructing the action for π in a systematic derivative

expansion. In unitary gauge this corresponds to an expansion in derivatives of the metric

fluctuations, which we now proceed to write down.

In order for the given FRW background to solve Einstein’s equations, the matter action

must contain ‘tadpole’ terms, i.e. terms that start linear in the metric fluctuations. Note

that the linear terms are canceled by a tadpole term in the Einstein action, since we are

expanding about a solution of the full action. However, the Einstein action is completely

invariant under time reparameterizations while the matter action is not, so it is useful to

keep the linear terms in the matter action for the Stückelberg trick. At the zero-derivative,

linear level the only invariant under spatial diffs is δN . Apart from that, a linear piece

in the fluctuation can also come from the
√−g that makes the integration measure diff

invariant. Therefore we have two independent operators at this order. Instead of choosing

the operators δN and 1 as our ‘basis’, we find it more convenient to choose a different

combination, 1/N2 and 1; the two bases are equivalent at linear order, their difference

being quadratic in δN ; the reason of this choice will soon become clear. At this order the

matter action is thus of the form

Smatter =

∫

d4x
√−g

[

c(t)
1

N2
− Λ(t)

]

. (3.9)

As discussed above, we allow for generic functions of time c(t), Λ(t) as coefficients of the

operators in the Lagrangian. In fact, the above action, truncated exactly at this level,

is the complete action in the case of an ordinary scalar field φ with a potential V (φ) in

unitary gauge. To see this, just re-write the standard action for φ on a solution φ(t) using

ADM variables:

Sφ =

∫

d4x
√−g

[

−1

2
(∂φ)2 − V (φ)

]

=

∫

d4x
√−g

[

1

2N2
φ̇2 − V (φ(t))

]

, (3.10)

which is exactly of the above form with c(t) = 1
2 φ̇2 and Λ(t) = V (φ(t)). This is the reason

why the parameterization in eq. (3.9) is convenient.

In principle one could also add tadpole terms that involve derivatives of the metric, like

for instance an extrinsic curvature term Ki
i. However by integration by parts such terms

can always be rewritten as a combination of our non-derivative tadpoles plus derivative

terms that involve higher powers of metric fluctuations, which we will discuss later.

We now rewrite the coefficients c(t) and Λ(t) in terms of the Hubble parameter and

its derivatives using the Friedmann equations. The matter stress-energy tensor evaluated

on the background configuration can be read from the action eq. (3.9):

Tµν = − 2√−g

δSmatter

δgµν
⇒

{

T00 = c(t) + Λ(t)

Tij = a2(t)δij

(

c(t) − Λ(t)
) (3.11)
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Therefore Friedmann equations are

H2 =
1

3M2
Pl

[

c(t) + Λ(t)
]

(3.12)

ä

a
= − 1

3M2
Pl

[

2c(t) − Λ(t)
]

(3.13)

Note that quadratic and higher order terms in the matter action do not contribute to the

background Einstein’s equation, since their contribution to the stress-energy tensor is at

best linear in the fluctuations and therefore vanishes if computed on the background. Thus

the above Friedmann equations uniquely determine the coefficients c(t), Λ(t). Eq. (3.9)

can therefore be written

Smatter =

∫

d4x
√−g

[

−M2
PlḢ

1

N2
− M2

Pl(3H
2 + Ḣ) + · · ·

]

. (3.14)

We now make use of the Stückelberg trick. Given the transformation law eq. (3.7), we

obtain simply

Smatter → Sπ =

∫

d4x
√−g (M2

PlḢ)(∂π)2 , (3.15)

where we neglected the total derivative linear term ∂0π.7

The Lagrangian for π is that of a standard relativistic scalar, but with an overall −Ḣ

factor. Note that whenever Ḣ > 0 the kinetic term has the wrong sign, leading to a

catastrophic ghost instability.

We can try to cure the instability we just found by adding quadratic terms to the

effective action eq. (3.14). At the zero-derivative level in ADM variables the only possible

quadratic operator is (δN)2,

Smatter → Smatter +

∫

d4x
√−g

1

2
M4(t) (δN)2 . (3.16)

The coefficient M4(t) is unconstrained, and it can be a generic function of time. In realistic

situations we expect its typical time-variation rate to be of order H, so we can approximate

it as a constant when studying short-wavelength fluctuations. In order to reintroduce the

Goldstone field we just need the trasformation law of N at first order in ξ0, N 7→ N −∂0ξ
0.

This changes the Goldstone action by

Sπ → Sπ +

∫

d4x
√−g

1

2
M4 π̇2 . (3.17)

As already stressed in Ref. [15], for large enough M4—larger than M2
PlḢ—the π̇2 gets

the healthy sign, but the gradient part of the action still has the wrong sign for Ḣ > 0,

signaling the presence of exponentially growing gradient instabilities at all wavelengths.

At the zero-derivative level in the metric, which corresponds to the two-derivative

level in the Goldstone, there is nothing more we can do. Indeed in Ref. [6] it was shown

7This term is a total derivative as long as we consider momenta much larger than H . When the time-

dependence of the coefficients is completely taken into account all linear terms are going to cancel exactly,

since the background solves Einstein’s equations.
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in a broad class of theories that whenever the matter stress-energy tensor violates the null

energy condition the system has instabilities, either in the form of ghosts or in the form

of exponentially growing modes. This was shown at the two derivative level. The example

of the last section makes no exception, its stability crucially relying on higher derivative

terms in the Goldstone Lagrangian and on the presence of the horizon for cutting off the

instability in the IR. We are therefore led to consider higher-derivative terms in the effective

action.

3.2 Higher-derivative Goldstone action

At next order in the derivative expansion we must include terms that involve the extrinsic

curvature Kij of constant-t hypersurfaces. Of course, since N is invariant under spatial

diffs, we can as well use its ‘reduced’ version Eij of eq. (3.4). Notice that the background

solution has non-zero extrinsic curvature, E
(0)
ij = a2H ĝij , so we are interested in the

fluctuation δEij ≡ Eij − E
(0)
ij . With it we can construct the quadratic operators δEi

i δN ,

δEij δEij , and δEi
i
2. Let us ignore for the moment the first of these operators, and let us

concentrate on the other two, for which the discussion is simpler. In order to see what these

operators correspond to in terms of the π field, it is sufficient to consider the transformation

law of δEij at linear order in the time-diff parameter ξ0 and at zeroth order in the metric

fluctuation. From the trasformation law gµν → gµν + ∇µξν + ∇νξµ we get

δEij → δEij − δij ∂t(a
2Hξ0) − ∂i∂jξ0 . (3.18)

The term proportional to δij is negligible for momenta much larger than H. In such a limit

we have

∫

d4x
√−g

[

−1

2
M̃2 δEi

i
2 − 1

2
M̃ ′2 δEijδEij

]

→
∫

d4x
√−g

[

−1

2
M

2 1

a4
(∂2

i π)2
]

, (3.19)

where M
2 ≡ M̃2 + M̃ ′2, and as before we approximated the coefficients M̃2 and M̃ ′2 as

constant in time.

According to our effective field theory approach, we are assuming that the scales M ,

M̃ , and M̃ ′ are all of the same order of magnitude, and all further terms appearing in

the effective action will be weighted by the same scale. Then terms that involve higher

time-derivatives on π will be negligible with respect to eq. (3.17) at frequencies below this

cutoff scale M . Similarly, terms involving more spatial derivatives on π can be neglected

with respect to eq. (3.19) at momenta smaller than M . Therefore in this regime the only

possible other term in unitary gauge is a linear term in the 3D curvature R(3). However,

as clear from eq. (3.3) such a term can always be re-written as an Einstein-Hilbert term

plus terms quadratic in Eij .

Collecting all of the terms considered so far, the matter action is

Sπ =

∫

d4x
√−g

[

(

M4

2
− M2

PlḢ

)

π̇2 + (M2
PlḢ)

1

a2
(∂iπ)2 − M

2

2

1

a4
(∂2

i π)2

]

. (3.20)
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The positivity of the π̇2 term is guaranteed for M4−2M2
PlḢ > 0. For simplicity in the rest

of this section we assume M4−2M2
PlḢ ' M4. Then the dispersion relation of π excitations

is exactly the one we studied in the example of section 2

ω2 = −2M2
PlḢ

M4
k2 +

M
2

M4
k4 , (3.21)

where k is the physical momentum. For positive Ḣ, the system has oscillatory excitations

with dipersion law ω2 ∝ k4 at large momenta and exponentially growing instabilites at

low momenta, ω2 ∝ −k2. That is, the higher derivative term cures the instability at small

wavelengths. The critical momentum below which the system is unstable is

kgrad ∼ Ḣ1/2 MPl

M
, (3.22)

corresponding to a typical instability rate

ωgrad ∼ Ḣ
M2

Pl

MM2
. (3.23)

We are interested in pushing the instability time-scale outside the cosmological horizon,

where the Hubble friction freezes the dynamics of perturbations. Note that the critical

length-scale can even be much smaller than the Hubble horizon—what matters is the

typical time-scale for developing the instability.

Up to now there is no obstacle in making the instability rate as slow as we like. It

is enough to choose a very large M
2

coefficient for the higher derivative term to make

ωgrad much smaller than H. But here is where the mixing with gravity becomes crucial.

Usually, if we restrict to momenta and frequencies much larger than H we are allowed

to neglect the fact that matter fluctuations are mixed with gravitational ones. This is

because, by definition of Tµν , such a mixing comes from a Lagrangian term of the form

hµν δT µν , where δT µν is the fluctuation in the matter stress-energy tensor at first order

in the matter fluctuations. Usually this is non-zero only if the background stress-energy

tensor is non-zero. For instance, for an ordinary massless scalar φ one has

hµνδT µν ∼ h φ̇0 ∂ϕ ∼ MPl H h∂ϕ , (3.24)

where φ0(t) is the background field configuration and ϕ is the fluctuation, and we assumed

that the expansion of the universe is dominated by φ. The mixing term is suppressed by H,

and at momenta and frequencies much larger than H it can be safely neglected. In the case

of a standard fluid one can repeat the same estimate, for instance by means of the effective

Lagrangian presented in Ref. [6]. The result is exactly the same: the mixing between sound

waves and gravity is proportional to H. As a consequence, the Jeans-instability time for

a fluid that drives the expansion of the universe is always of order H−1. In our case the

situation is very different: we already stressed that all quadratic terms we add to eq. (3.14)

gives contributions to the matter stress-energy tensor that are linear in the fluctuations,

weighted by coefficients that are unrelated to the background energy-density. This means
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that the mixing they induce is completely unrelated to H, and can lead to modifications

of the fluctuation dispersion law at frequencies parametrically larger than H.

In particular, the higher-derivative terms we are adding to cure the gradient instability

enhances the mixing of π with gravity. The larger we make M
2

in order to cure the gradient

instability, the bigger the effect of this mixing, and—if the mixing tends to destabilize

the system—the faster the gravity-induced instability. We will see in the next section

that indeed when the full gravitational dynamics is taken into account the system gets

destabilized. In fact for frequencies much faster than H and ωgrad our system just reduces

to the ghost condensate in Minkowski space, which features a Jeans-like instability [7]. In

this regime we can estimate the rate of the gravity-induced instability in our system to be

the same as that of the ghost condensate,

ωJeans ∼
MM2

M2
Pl

, (3.25)

which is faster for larger M
2
. In fact we get ωgrad ωJeans ∼ Ḣ. In this case it is obvious

that the best we can hope for is a compromise: the slower we make the gradient instability,

the faster the Jeans instability becomes, and vice versa. As we discussed in section 2 we

want both kinds of instability to be slower than Hubble. Therefore the parameters M and

M must be chosen so that the combination MM2/M2
Pl lies in the interval

Ḣ

H
.

MM2

M2
Pl

. H . (3.26)

This is really an interval only if Ḣ is parametrically smaller than H2. For Ḣ ∼ H2 the

choice is highly constrained: MM2/M2
Pl ∼ H. Finally, for Ḣ much larger than H2 one of

the two instabilities is unavoidable.

So far we neglected a possible term

∆Smatter = −
∫

d4x
√−g M̂3δEi

iδN . (3.27)

Given the trasformation laws of δN and δEij , in terms of the π field this operator cor-

responds to a three-derivative term of the form −M̂3π̇ 1
a2∇2π, apart from a negligible

correction to the π̇2 term of eq. (3.17). However upon integration by parts such a term can

be rewritten as

−M̂3π̇
1

a2
∇2π → M̂3 1

2a2

d

dt
(∂iπ)2 → −HM̂3 1

a2
(∂iπ)2 , (3.28)

where again we are assuming that the time variation rate of the coefficient M̂ is generically

of order H. We therefore get a gradient energy term which, although it is suppressed by H,

can in principle compete with that coming from the tadpoles, eq. (3.15), itself suppressed by

Ḣ. In particular by choosing M̂3 larger than roughly ḢM2
Pl/H we can make the gradient

energy positive. But again we have to worry about the effect of mixing with gravity. In
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analogy with the above discussion such a mixing is unrelated with the background stress-

energy tensor and thus with H, and gets enhanced when we take M̂3 larger and larger.

This makes the Jeans-like instability—if present—faster and faster. However there is a

qualitative difference with respect to the previous case: here there are no k4 terms, so that

the mixing with gravity is relevant not only in the IR but at all scales. It is easy to check

that the mixing terms become as important as the diagonal ones for M̂3 & HM2
Pl. As we

argued, the gradient instability is cured for M̂3 & ḢM2
Pl/H. Then for Ḣ ¿ H2 one can

choose M̂3/M2
Pl to lie in the same parametric range as before, eq. (3.26): in such a range

mixing with gravity is negligible and the system is stable at all wavelengths, with no need

of higher-derivative terms in the UV and of the cosmological horizon in the IR. As we will

see in the next section, systematically taking into account the full gravitational dynamics

shows that this parametric range for M̂3 is indeed the only one for which the system is

stable.

In conclusion—as long as we restrict ourselves to systems that spontaneously break

time translation invariance—we verify the generality of the tension found in section 2

between a violation of the null energy condition and the stability of the system. The

system can be made completely stable only when Ḣ ¿ H2. We are now going to confirm

the results we got by a full calculation including gravitational effects.

3.3 Full gravitational analysis

In this section we want to write an explicit second order Lagrangian for scalar pertur-

bations around an FRW background with Ḣ > 0 including the mixing of the scalar with

gravity. This will show both the instabilities we discussed and the constraints on the model

parameters to achieve stability.

Notice that the ADM variables N and N i are not dynamical, i.e. the action does

not contain their time derivative. They should be thought as Lagrange multipliers: their

equations of motion are respectively the Hamiltonian and momentum constraints of General

Relativity. This means that we can solve for N and N i from their equations of motion

and plug the result back into the action, to get the Lagrangian for the scalar mode we

are interested in. The Lagrangian turns out to be more useful to study instabilities than

directly looking at the linearized equations of motion. A ghost instability, where a system

has the “wrong” sign of the energy, does not show up if we study the linearized equation

of motions, but it will be manifest at the Lagrangian level.

We choose unitary gauge, π ≡ 0. We have still to fix space diffeomorphisms and a

convenient gauge is given by

hij = a(t)2 [(1 + 2ζ)δij + γij ] , ∂iγij , γii = 0 . (3.29)

The matrix γ describes tensor modes and in the following it will be neglected as we are

only interested in the dynamics of the scalar perturbation ζ. In this gauge the scalar

perturbation is given by an isotropic perturbations of the 3D metric at constant t.

Let us now proceed to write an explicit Lagrangian for ζ at second order. Postponing

the discussion about the δNδEi
i term, we start from the action we constructed in the
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previous section,

S =

∫

d3xdt
√−g

[

M2
Pl

2

(

R(3)+N−2(EijE
ij−Ei

i
2)

)

−M2
Pl

(

1

N2
Ḣ(t) + 3H(t)2 + Ḣ(t)

)

+
M4

2
δN2 − M

2

2
δEi

i
2

]

. (3.30)

In the first line the first two terms reconstruct the full 4D Ricci scalar, as in eq. (3.3). The

other terms of the first line are the tadpole terms as in eq. (3.14), while on the second line

we have contributions which are quadratic in the perturbations. For simplicity we neglect

quadratic terms of the form δEijδE
ij , as we explicitly checked that they do not change the

results, and we take M and M time independent.

The variation of the action with respect to N gives the Hamiltonian constraint

M2
Pl

2

(

R(3) − N−2(EijE
ij − Ei

i
2)

)

− M2
Pl

(

−N−2Ḣ + 3H2 + Ḣ
)

+ M4δN = 0 , (3.31)

while the variation with respect to N i gives the momentum constraint

M2
Pl∇̂j

(

N−1(Ej
i − δj

i E
k
k)

)

− M
2∇̂iE

k
k = 0 . (3.32)

We are interested in the Lagrangian at second order. Thus we have to solve these equations

only at first order in the perturbation ζ, as second order terms would multiply, once sub-

stituted back into the action, the unperturbed constraint equations ∂L/∂N and ∂L/∂N i,

which vanish. Expressing the perturbations as N = 1 + N1 and N i = ∂iψ we can solve the

two constraint equations in terms of ζ

N1 =
4M4

PlH · ζ̇ + 2M2
PlM

2 · ∇2ζ/a2

4M4
PlH

2 + M
2
M4

(3.33)

∇2ψ =
(−18M2

PlM
2
H2 + 2M2

PlM
4 − 4M4

PlḢ) ζ̇ − 4M4
PlH · ∇2ζ/a2

4M4
PlH

2 + M
2
M4

, (3.34)

where we assumed M,M ¿ MPl.

The quadratic action for ζ is then obtained by substituting these solutions into the

original action eq. (3.30). After some integration by parts, the result is given by

S =

∫

d3x dt a3(t)

[

A(t) ζ̇2 + B(t)
(∂i

a
ζ
)2

+ C(t)
(∂2

a2
ζ
)2

]

. (3.35)

We have three operators quadratic in ζ with coefficients which are time dependent and

given by

A(t) =
2M4

Pl

(

M4 − 9M
2
H2 − 2M2

Pl Ḣ
)

4M4
Pl H

2 + M
2
M4

(3.36)
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B(t) =
M2

Pl

(4M4
PlH

2 + M
2
M4)2

[

−24M6
PlM

2
H4+M

2
(M4 − 2M2

PlḢ)(M4M
2 − 4M4

PlḢ)

+ 4H2(M4M4
PlM

2
+ 4M8

PlḢ)−8M6
PlM

2
HḦ

]

(3.37)

C(t) = − 2M4
PlM

2

4M4
PlH

2 + M
2
M4

. (3.38)

Using the ADM approach we managed to get a Lagrangian for the single relevant degree of

freedom ζ. It contains all the information about the dynamics of the system, in particular

all the possible instabilities we are interested in. Notice that we have no mass term for ζ,

but only terms containing derivatives. The reason is quite general and it extends beyond the

quadratic order [16]. From the definition eq. (3.29) it should be clear that if we can neglect

spatial gradients of ζ, i.e. for a sufficiently long wavelength, this variable cannot evolve in

time, as it is equivalent to a constant isotropic rescaling of the spatial coordinates. A mass

term would not allow this and it is therefore forbidden. Notice that the action for ζ allows,

disregarding gradient terms, to study the homogeneous perturbations of the background

and in particular to check if a background solution is an attractor. From the time kinetic

term of ζ in its action eq. (3.35) we immediately get the solution

ζ̇ =
const

a(t)3A(t)
. (3.39)

In this way, it is easy to check that slow-roll inflation and the ghost-condensate are attrac-

tors.

Let us now proceed to explicitly recover from this Lagrangian all the qualitative results

about instabilities of the previous sections. As discussed, we are interested in time scales

much smaller than the Hubble time. This simplifies the algebra; for example in deriving

the equations of motion from the action above we can neglect the time variation of the

coefficients A, B and C. An additional simplification comes from the fact that for the

validity of the effective field theory description we must have H ¿ M and H ¿ M̄ . We

thus reduce to a rather simple equation of motion

ζ̈ =
(M

2
M4 + 4M4

PlḢ)k2 − 2M2
PlM

2
k4

2M2
Pl(M

4 − 2M2
PlḢ)

ζ , (3.40)

where k is the physical momentum. As we discussed in the previous sections, in eq. (3.36)

we see that to avoid ghost-like instabilities we have to take M4 > 2M2
PlḢ. We can focus

on the regime M4 À 2M2
PlḢ, because if the two terms are comparable the instabilities

are clearly worse. The resulting dispersion relation captures all the qualitative features we

discussed8

ω2 =
−(M

2
M4 + 4M4

PlḢ)k2 + 2M2
PlM

2
k4

2M2
PlM

4
. (3.41)

8In the limit we are discussing one can check that the inclusion of the δEijδE
ij term just amounts to a

redefinition of the constant M .
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The two terms proportional to k2 describe the two instabilities we have discussed: the

first, which is independent of Ḣ, corresponds to the Jeans instability already present in

Minkowski space, while the second leads to the gradient instability, weighted by Ḣ. It is

straightforward to find the unstable momentum k with the fastest (imaginary) frequency;

this defines the instability rate. We get

ωmax =

(

1

4

MM2

M2
Pl

+ Ḣ
M2

Pl

MM2

)

. (3.42)

This formula unambiguously displays the complementarity of the two physically distinct

instabilities we discussed; neither for MM2/M2
Pl → 0 nor for MM2/M2

Pl → ∞ do we end

up with a stable system. One can try to minimize ωmax by a proper choice of MM2/M2
Pl.

The rate of instability is minimized for

MM2/M2
Pl = 2Ḣ1/2 → ωmax = Ḣ1/2 . (3.43)

The full analysis therefore confirms what obtained in the previous sections. The instabilities

can be pushed out of the horizon by a proper choice of the model parameters only if

Ḣ . H2 . (3.44)

Let us now analyze the effect of the δN δEi
i operator. For simplicity we set to zero

the δEi
i
2 term, and consider the following action

S =

∫

d3xdt
√−g

[

M2
Pl

2

(

R(3) + N−2(EijE
ij−Ei

i
2)

)

−M2
Pl

(

1

N2
Ḣ(t) + 3H(t)2 + Ḣ(t)

)

+
M4

2
δN2 − M̂3δNδEi

i

]

. (3.45)

The calculation follows exactly the same lines as before and we end up with an action for

ζ of the form

S =

∫

d3x dt a3(t)

[

Â(t) ζ̇2 + B̂(t)
(∂i

a
ζ
)2

]

. (3.46)

where the the time-dependent coefficients are

Â(t) =
M2

Pl(−12M2
PlHM̂3 + 2M4M2

Pl − 4M4
PlḢ)

(−M̂3 + 2M2
PlH)2

(3.47)

B̂(t) =
M2

Pl(M̂
6 − 2M2

PlHM̂3 + 4M4
PlḢ)

(−M̂3 + 2M2
PlH)2

. (3.48)

Notice that, as expected, we have no k4 terms, which in the previous case were coming

from the operator δEi
i
2. In the limit of time scales much smaller than H−1 we get the

dispersion relation

ω2 =
−M̂6 + 2M2

PlHM̂3 − 4M4
PlḢ

2M2
PlM

4
k2 . (3.49)
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Clearly the system is stable only if the coefficient of the k2 term is positive. We can obtain

this with a proper choice of M̂ , only if

Ḣ ≤ H2

4
. (3.50)

In analogy with the previous case, there is a parametric window for M̂ only if Ḣ ¿ H2

Ḣ

H
.

M̂3

M2
Pl

. H . (3.51)

In conclusion, the explicit calculation confirms what we argued in the previous section.

Both with the δEi
iδE

i
i and with the δNδEi

i terms we can have stability only if Ḣ . H2.

In a generic effective action both quadratic terms will be present at the same time but at

this point it is clear that this cannot change the qualitative picture.

4. Applications

In this section we give some illustrative examples of non-standard cosmological histories

that are now allowed as the NEC can be violated without introducing pathologies.

4.1 Today’s acceleration

After the surprising discovery that the universe is presently accelerating (in the sense that

ä > 0), it is natural to consider the even more exotic possibility that the Hubble rate is

growing with time (Ḣ = ä/a − (ȧ/a)2 > 0). It has become common to parameterize the

present expansion in terms of the equation of state parameter w ≡ p/ρ, where p and ρ are

respectively the present pressure and energy density of the universe. The violation of the

null energy condition is equivalent in this language to the inequality w < −1. Present data

require w & −1.2 [1, 2], leaving room for observing w < −1.

The simple toy model in section 2 gives an example of a model with w < −1 with no

fine tuning or instability. More general models can easily be written using the formalism

of section 3. As already discussed, to avoid instabilities the model parameters must satisfy

the inequalities

−(1 + w)H .
MM2

M2
Pl

. H , (4.1)

or analogous ones in the presence of a M̂3 δNδEi
i term. If we demand that instabilities

are parametrically suppressed, we must have Ḣ ¿ H2, and therefore |w + 1| ¿ 1. It is

phenomenologically more interesting to consider the case where w is near the lower exper-

imental limit |w + 1| ∼ 0.2. In this case, the instability is not parametrically suppressed,

and we expect that the new degree of freedom has an unstable mode. We stress again

that this is a long-wavelength instability like the familiar Jeans instability for matter, and

not a breakdown of the effective theory. The presence of unstable modes in dark energy

in models with |w + 1| ∼ 1 is very general, and gives a possible new observable handle on

these models. We leave the details for future work.
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We want to stress that this way of explaining a possible observation of w < −1 relies on

a genuine violation of the null energy condition: the Einstein frame metric has Ḣ > 0. This

is completely different from other “phenomenological” approaches that mimic a violation

of the null energy condition. For example one way to get w < −1 is to couple matter to a

conformally rescaled metric f(φ)gµν , where gµν is the metric in Einstein frame and φ is an

evolving scalar field. Experiments will be sensitive to the way this new metric evolves, so

that an observation of w < −1 would not imply a violation of the null energy condition.

Notice however that this kind of models is severely constrained by fifth force experiments,

see for example Refs. [17, 6]. Other approaches [18, 19] mimic the presence of a dark energy

component with w < −1 while keeping Ḣ < 0: the total equation of state of dark matter

and dark energy has w > −1.

4.2 Starting the Universe

If the NEC is satisfied, a very general property of an expanding universe is that it always

evolves from a state with high energy density towards a state with a lower one. This implies

that any effective field theory description will eventually break down if we go sufficiently

backwards in the past. Now that we have shown that it is possible to violate the NEC

without introducing patologies, we can consider the possibility that the universe “starts”

from a very low energy state, gains energy in the expansion, and eventually reaches an

high energy state from which the standard cosmological evolution begins. In particular,

the universe could approach flatness in the asymptotic past, H → 0 for t → −∞.

Notice that in any such model, independently of the details of the evolution, the

present causal horizon is always infinite, since the universe expanded for an infinite proper

time. This gives a potential alternative approach to standard inflation for solving the

homogeneity problem of the universe.

It is straightforward to implement this in the framework of the general effective action

presented in section 3, specifying for example in eq. (3.20) a suitable function H(t). For

instance, if we take the scaling solution H(t) ' α/|t| for t → −∞ with α À 1, we approach

flatness in the past, while keeping the required parametric separation

Ḣ ' α

|t|2 ¿ α2

|t|2 ' H2 . (4.2)

The instabilities are under control if

Ḣ

H
.

M(t)M(t)2

M2
Pl

. H . (4.3)

Since H(t) → 0 for t → −∞, we see that the model parameters must change with time

in order to keep these conditions satisfied. As we discussed, since the system is not

time-translationally invariant, it is generic that the coefficients of the effective Lagrangian

M,M̃, M̂ , . . . explicitly depend on time with a time scale of order H. There is therefore

no difficulty in making the system stable at all times.

It is easy to give an explicit realization of this scenario in a scalar field model similar to

that of section 2. Besides an appropriate choice of the potential, an explicit φ dependence
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must also be present in the derivative terms. At the level of the π action, this translates

into a time dependence of the parameters, so that with an appropriate choice, the condition

eq. (4.3) can be satisfied. Notice that the explicit φ dependence is compatible with the fact

that the shift symmetry on φ is already broken by the potential. To give an example, we

start from a Lagrangian of the form eq. (2.1), which admits the solution φ = t. We choose

the minimum of P to be at zero, e.g.

P (X) =
1

8
(X − 1)2 , (4.4)

so that in the absence of a potential term the solution for the metric is Minkowski space.

Since we want H to vary slowly with time, the stress-energy tensor must be dominated by

the potential. To reproduce H = α/|t| we need

V ∼ α2M2
Pl

φ2
. (4.5)

As in section 2, this will slightly displace φ̇ from the minimum of P , but this perturbation

is small at early times and the corresponding correction to the stress-energy tensor is

negligible. This solution is approaching a “big rip” singularity as t → 0, so at some

negative t it will break down. In particular, at t ∼ −α1/2MPl/M
2 we would have π̇0 ∼ 1,

and the unperturbed solution cannot be trusted any more. This corresponds to a maximum

Hubble rate of order Hmax ∼ α1/2M2/MPl. Before this happens, we can match the solution

to a standard FRW phase.

To complete the construction of the model, we must introduce higher derivative terms.

To satisfy the condition eq. (4.3) at all times, we need M to depend on time, which is

accomplished by making the 4-derivative terms depend on φ as 9

∆L = M
2
0

φ2
0

φ2
(¤φ)2 . (4.6)

One can check that the contribution of this term to the stress-energy tensor is negligible

at sufficiently early times, up to Hubble rates of order M2/MPl. The φ-dependence of the

potential and of the (¤φ)2, besides making the mass scales time-dependent, introduces

small changes in the dynamics of the perturbations. For example, masses and additional

(∂π)2 terms will be generated, but they will be negligible. This can be simply understood

from the fact that for large α the rise of H is very slow and the system approaches the

ghost condensate in de Sitter space.

In summary, putting together the Lagrangian terms eqs. (4.4–4.6) we have an explicit

model for a universe which starts expanding from a zero-curvature state without developing

any instability. The point is not to present a particular compelling cosmological model,

but to stress that it is possible to build models where the present universe evolved from a

state which is asymptotically flat in the past.

9In this way we introduce a large hierarchy between M and M which may be difficult to justify at the

level of effective field theory. Alternatively both scales could move together remaining in the allowed range

eq. (4.3). In this toy model, we stick to the simplest case in which only M is time dependent.
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4.3 The eternally expanding cyclic Universe

Given the two scenarios above, one is tempted to put them together to build an eternally

expanding universe with a cyclic evolution. We can imagine, as in section 4.1, that the

present expansion has Ḣ > 0. This means that in the future the universe will be inflating

with a larger and larger energy density. At a certain point this energy can be converted to

matter and radiation as in a conventional inflation model to start a new FRW-like evolution

[20, 10]. Then one is lead to connect the present acceleration with the inflationary phase

which occurred in our past, to build a periodic universe that goes through this cosmological

history many times.

An illustrative example is based on the model of section 2. At the present epoch, the

field rolls up the potential giving a super-accelerating phase with growing energy. The

reheating to a new FRW phase can be achieved by a sudden drop of the potential. If we

imagine that the field φ is periodic (see Fig. 2), we obtain a periodic cosmological evolution

in which the present acceleration is the beginning of a super-inflationary phase identical to

the one that is responsible for the structure formation in our universe.

As already discussed in section 2, the linear potential is technically natural because

the shift symmetry is unbroken in the absence of gravity. The sharp drop of the potential

responsible for reheating breaks the shift symmetry even in the absence of gravity, and

will therefore induce more general terms that break the shift symmetry through radiative

corrections. However, the breaking of the shift symmetry is localized in φ, so it is technically

natural for the potential to be linear a distance ∆φ >∼ M away from the sharp drops.

The model can be made stable for the entire cosmological history. If at the present

epoch eq. (4.1) is satisfied, we know that we are safe from instabilities while the scalar

rolls up the potential. Looking backwards in time from the present epoch, we enter into a

matter dominated and then radiation dominated phase (see Fig. 2). As H is larger then

nowadays, the Jeans instability, whose rate is independent of H, is under control. Also

the gradient instability is not an issue since its rate is proportional to V ′/H and it thus

becomes smaller and smaller in the past.

If we take this model seriously, it gives a striking relationship between the present

equation of state w and the tilt of the inflationary spectrum ns: they both depend on the

constant slope of the potential V ′.

Following Ref. [20, 10] the spectrum of density perturbations goes as

Pζ ∼
(

HI

M

)
5

2

(4.7)

where HI is the Hubble rate during the inflationary phase. The slow variation of HI gives

a tilt:

ns − 1 ' 5

12

V ′

M2
PlH

3
I

. (4.8)

On the other hand, the current acceleration of the universe would be characterized by an

equation of state w equal to

1 + w = − V ′

9M2
PlH

3
0

, (4.9)
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Figure 2: Schematic representation of the periodic model presented in section 4.3.

where H0 is the current Hubble rate. We thus get the relation

ns − 1 = −15

4

(

H0

HI

)3

(1 + w) . (4.10)

Given the constraints on w, the tilt of the spectrum is predicted to be extremely small and

practically impossible to measure. Moreover, to be able to test this relationship one should

determine HI . The production of gravitational waves does not help, since the energy scale

M is constrained to be too low. In principle M could be determined from gravitational

experiments or through the direct coupling of this scalar sector to the standard model, so

that HI could be fixed through eq. (4.7). If the detection of a negative tilt by the WMAP

experiment [1] is confirmed this specific model will be ruled out.

If we allow the scale M to be a function of time we do not have constraints coming

from the present day modification of gravity. In this case the amplitude of gravitational

waves could be sufficiently large to be observed. Notice that these gravitational waves

would have a blue spectrum, a striking signature of violation of the NEC.

In conclusion we have shown how the violation of the null energy condition opens up

the possibility of relating the present and past evolution of our universe and of building

periodic cosmological histories.

4.4 The big bounce

The null energy condition implies that the cosmological evolution in the absence of spatial

curvature cannot bounce from a contracting to an expanding phase, since we need Ḣ > 0 to

make H change sign. We expect that bouncing cosmologies can be realized in our scenarios.

However, as H = 0 at the bounce, one could wonder whether the instabilities can be kept

under control. Obviously the real issue is whether the instabilities have sufficient time to

grow. We will see that it is possible to control instabilities by making the bounce sufficiently

fast.
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Figure 3: Schematic dependence of the scale factor a(t) and of the Hubble rate H(t) in the

bouncing model of section 4.4, assuming that the bounce is matched to standard Ḣ < 0 phases

both for t < −T and for t > T .

Let us take the following simple evolution of the scale factor around the bounce (see

figure 3)

a(t) = 1 +
t2

2T 2
, (4.11)

so that for |t| ¿ T

H(t) ' t

T 2
. (4.12)

A system that realizes this bounce is described for example by the π action eq. (3.20),

with H(t) as above. The stability condition eq. (3.26) shows the potential problem. The

Hubble rate, which is crucial in stabilizing the Jeans and gradient instabilities, goes to zero

at the bounce.

Let us see how the problem can be solved. For simplicity we assume that the parameters

M and M are time-independent. Notice that during the bounce Ḣ is constant, Ḣ '
1/T 2. As we have shown in section 3, for a given Ḣ the instability rate is minimized for

MM2/M2
Pl = 2Ḣ1/2, which gives

ωinst = Ḣ1/2 =
1

T
. (4.13)

This choice makes the rate of gradient and Jeans instability the same; see eqs. (3.42–3.43).

In this case the only time scale during the bounce is T . In particular at t ∼ ±T the

Hubble rate is H(±T ) ∼ ±1/T . Therefore the period for which the instability is faster than
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H only lasts a time of order T , which is one instability time. That is, the instability does

not have time to develop. There is, however, another form of instability one has to worry

about during the contracting phase. In a contracting universe anisotropic contributions

to the Friedmann equation blue-shift like a−6. This means that in order for a contracting

solution not to be destroyed by anisotropic metric perturbations the contraction must

satisfy Ḣ < −3H2 [21]. Of course when the bounce phase sets in at t ∼ −T this condition

is violated, but since the scale factor only varies by a factor of order unity during the

bounce, the anisotropies will only grow by an order one factor, which obviously is not a

problem.

Outside the |t| < T window, one can match the bounce to a contracting phase for

t < −T and to an expanding one for t > T . The expanding phase can be a standard

decelerated FRW evolution, similarly to what happens in ekpyrotic/cyclic scenarios, or a

super-accelerating phase with Ḣ > 0, which can make H as large as we like. For negative

t one is forced to consider a Ḣ < 0 phase to avoid growing anisotropic perturbations.

Notice that as H decrease going to negative t (and also for positve t if Ḣ < 0) the Jeans

instability is active. This can be cured as we did in section 4.2, e.g. by postulating that

M
2

has a suitable time-dependence that makes the Jeans instability rate slower than H.

This is certainly consistent at the level of the effective field theory for the fluctuations we

developed in the previous section. In the language of the scalar φ, this would correspond

to a particular φ dependence of the higher derivative part of the Lagrangian. Finding the

explicit form of such a Lagrangian is out of the scope of the present paper.

We conclude that it is possible to realize a FRW solution in which the universe bounces

from a contracting phase to an expanding one, without developing catastrophic instabilities.

To our knowledge, this is the first case in which a bouncing solution is realized in a situation

where the importance of all the higher derivative terms is controlled in an effective field

theory expansion at low energies.

In this controllable setup it is easy to follow the evolution of cosmological perturbations

from the contracting to the expanding phase. This is crucial for the experimental viability of

ekpyrotic/cyclic scenarios [9]. Since our bounce satisfies the general hypotheses of Ref. [22],

it unfortunately leads to a non scale-invariant prediction for density perturbations.

5. Conclusions and outlook

In this paper we have shown that at the level of effective field theory there is no obstruction

in constructing systems that violate the null energy condition (NEC). In particular, the

instabilities that plague a very broad class of NEC-violating systems [6] can be completely

avoided. We use this to construct cosmological models with Ḣ > 0 that do not have any

instabilities.

These results depend crucially on the interplay between two potential types of insta-

bilities. The first are gradient instabilities that occur very generally whenever the NEC

is violated. These can be avoided due to higher-derivative terms in the effective theory.

However, increasing the higher-derivative terms increases the effect of another potential in-

stability, the Jeans instability that arises from the attractive nature of gravity. The Jeans
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instability can be avoided if the time scale for the instability is longer than the Hubble

time. Demanding that both of these instabilities are absent requires

Ḣ <∼ H2 . (5.1)

This means that we cannot get an arbitrarily large violation of the NEC. These results

are derived both in a specific model (a deformation of ghost condensation [7] deformed by

the addition of a potential [20, 10]) and in a very general effective field theory analysis of

adiabatic scalar fluctuations about an arbitrary FRW background.

We emphasize that if eq. (5.1) is violated the effective field theory does not break down,

but it contains long wavelength exponentially growing modes. These might be interesting

for cosmology: for example, if the present acceleration of the universe has w = p/ρ < −1,

then it becomes possible that they might have shown up around our present epoch.

We constructed a number of explicit examples to show how this can lead to interesting

alternative cosmological scenarios. We constructed a simple explicit model that gives w <

−1 today. We also presented a model in which the universe starts from Minkowski space in

the distant past, giving a possible alternative to standard inflation for solving the horizon

problem. Putting these together, we consider an eternally expanding cyclic model in which

the present accelerating phase is the beginning of inflation in the next cycle. This opens

up the intriguing possibility that measurements today can give information about the

inflationary phase that gave rise to the structure we observe today. Finally, we constructed

a model which has a smooth “bounce” connecting a contracting phase to the present

expanding phase. Although bouncing cosmologies have been previously considered in the

literature, we believe ours is the first example in which the bounce is under theoretical

control. These illustrate some of the phenomenologically interesting possibilities opened

up by violation of the NEC. We leave detailed analysis of these ideas to future work.

We close with some theoretical questions. It would be interesting to understand

whether the requirement Ḣ ¿ H2 to have a parametric suppression of instabilities is

completely generic or not. Models involving more degrees of freedom could be completely

stable even when the NEC is strongly violated.

While the results of this paper are under control in a systematic effective field theory

expansion, it is natural to ask whether this particular effective field theory can be embedded

in a UV complete theory such as renormalizable quantum field theory or string theory. In

particular, the somewhat exotic features of the ghost condensate (e.g. Lorentz breaking and

complicated nonlinear dynamics [7]) may make one suspicious that the ghost condensate lies

in the “swampland” of effective field theories without UV completions [23, 24]. In fact, in

Ref. [25] it was shown that a large class of consistent effective field theories (including some

interesting modifications of gravity) have no Lorentz invariant UV completion, essentially

because they allow configurations in which signals travel faster than light [25]. The present

model does not suffer from this problem, since the excitations of the ghost condensate have

a dispersion relation ω2 ' k4/M2, and therefore travel much slower than light. However,

it is true that there is currently no known UV completion of the model; for an interesting

recent attempt, see Ref. [26].
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Despite these open questions about the full consistency of the model at all energy

scales, we believe that the phenomenological possibilities opened up by violation of the

NEC are well worth further exploration.
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Note added. In a recent paper [27] a NEC-violating model was presented. It involves

a vector field as well as a scalar. Like ours, the model has no UV—i.e., arbitrarily fast—

instabilities, but only exponential instabilities below a critical momentum kc. However, not

even in the ‘slow roll’ regime Ḣ ¿ H2 can the instability rate ωc be made slower than the

Hubble rate. What prevents the system from being disrupted is then that fluctuations exit

the horizon, so that instabilities only have a finite amount of time to develop before being

damped by Hubble friction. On the other hand, in our case when Ḣ ¿ H2 the system can

be made completely stable.
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